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Owners Conundrums
• New Structures

– How do I design for concrete durability given:
• AS Codes only provide deemed to satisfy requirements that

–Are not tailored to all environments
–Do not include a measure of durability
–May not give the reliability wanted 
–Do not include many products avaialble

• Existing Structures
– How do I reliability account for, and plan maintenance for, a life when:

• I don’t know the current condition or rate of decay
• Wether I am headed to catastrophic failure 
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Infrastructure Value – Responsibility of Owners
• “Infrastructure value is 3x that of the capitalisation of all 

companies.” Marcel Poser, Chairman, Proceq.
• “ …AU$21.9 trillion gap between what is currently invested in 

infrastructure, and what is actually needed.” Marie Lam-
Frendo, CEO, Global Infrastructure Hub.

• “..in 10 to 15 years, Australia’s bridges will be in the same 
condition as the United States, where 30 per cent of 625,000 
bridges are listed as functionally obsolete or structurally 
deficient” Dr Colin Caprani, Monash University. 
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New Design Approach
New Approach ISO 16204; fib Bulletin 34 
• Design Requirements

– Defined Limit State
– Reliability, Design Life and Exposure

• Concrete Design Variables
– Cover
– Chloride diffusivity

• Initial and Aging factor
– Base Chloride
– Surface Chloride

• Testing to confirm assumptions
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• Could be inadequate or overkill
• Cement systems critical
• Curing major impact

What about:
• 50 or 100 years?
• Lowest Life Cycle Costs?
• Prestressing Protection?
• Using Alternative Steels?
• Using Better Concrete
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1, 2,3 and 4 are all potential 
condition limit states

• Condition Serviceability Limit States

• Performance Limit States
• Operational Limit States

fib MC2010

Define Limit States 

e.g. 
Indonesia

e.g. 
Australia
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Design Life – AS 1170 Reliability vs Consequence
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Typical SLS PoF 4% 

Used for snow, wind and earthquake. 
Durability not specifically included
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Target Reliabilities – ISO 2394
• Inverse probability function

• ISO 2394 
Relative costs of 
safety measures
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e.g. crane 
beams

e.g. deck 
soffit
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Required Relaibility

Balanced Reliability Approach
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Design Life
• Financial – Net present value of 

replacement
– House 50 yr design life
– Bridge 100 yr design life
– Water tank 50100yr design life
– Marine Structures

• Sustainability
– Fib Model Code 2020

• Based on Sustainable design
• Include design of existing structures
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would the the worlds third 
largest producer of CO2
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Levels of Approximation (LoA)
• All analysis are approximations of reality

• Different levels of approximation have different accuracy

• Refine solutions by better parameters estimation 

Model Code 2010 Cl 3.1.2
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Verification Methods
• Full probability analysis 

– Calculates the probability of failure at the end 
of the design life 

• Partial factor analysis 
– Determined by researchers for key variables 

for practitioners to use deterministically in 
the equations.

• Deemed to satisfy
– Currently determined by experience but likely 

to be set by FPA. 

• Avoidance
– the use of something that eliminates the 

failure risk. 

Ccrit=C0+(Cs.x-C0)  1-erf[(a-x)/(2{Dapp,c
t}0.5]

Deterministic modelling is 
not included
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Typical Chloride Model Inputs (fib Bulletin 76)

Unit Name Mean Std. Dev. Beta a Beta b Units Source
DRCM0 Migration coef. 5.48 0.07 10-12 m2/s Measured

c Cover 55 5 mm Design assumption
Ccrit Critical chloride 0.6 0.15 0.2 2 Wt % cem. Bulletin 76 black, atmos
CsΔx Surface chloride 2 0.2 wt.%/c Bulletin 76 Atmospheric
α Age factor 0.65 0.12 0 1 constant Bulletin 76 Atmospheric
t0 Test age 0.255 year Test certificate
t Design life 100 years Specification

be Temperature coef. 4800 700 constant Bulletin 76
Tref Ref. Temp. 296 degrees K 23C
Treal Actual Temp. 301 8 degrees K 28C
Δx Surface zone 0 mm General for atmospheric
c0 Base chloride level 0.05 wt.%/c Assumed
n No of simulation 100000 constant Scilab setting
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Modelling/HPC – Lower Cost, Higher Sustainability
• Lighter beams
• Longer spans
• Fewer piers
• Smaller cranes
• Less concrete
• Less prestress
• ‘Cost advantage 20% of the bid price, i.e. some $20 million’

L.McSaveney et al. “SCC for Superior Marine Durability - New Zealand’s new Tauranga Harbour Link” 2011
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50% Probability of 
corrosion

Deterministic modelling 
using means = 93 years
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Determ. one 
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Tests for Chloride Ingress Rate - New Structures
• Very basic structure 

– Use appropriate deemed to satisfy
• Higher investments

– Initial design
• Check DtS using assumed values in initial design
• Consider alternative design against DtS calculation

– Pre Construction
• Test chloride diffusivity of cylinders
• Test chloride diffusion of mock up

– During Construction
• Test chloride diffusivity of as built
• Assess aging factor by repeat tests
• QA tests - Resistivity
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Surface Chloride Levels
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Aging Factor (fib Bulletin 76)

Cement Type
w/c 0.4-0.6
CEM 1 (GP Cement)
CEMII/A-D (6-10% Silica fume)
CEMII/B-V (21-35% Fly Ash)
CEMIII/A (36-65% S)
CEMIII/B (66-80% S)
CEM1 +5% SF

All

Aging Factor BetaD (/) a=0.0, b=1.0
Submerged, Tidal, Splash Spray Zones

0.30/0.12
0.40/0.16
0.60/0.15
0.40/0.18
0.45/0.20
0.40/0.16

Atmospheric
0.65/0.12

High Aging Factor gives long design life

Same w/c & 
strength;
Very different 
performance

Aging factor most 
influential factor on 
chloride ingress
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Critical Chloride Content
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Low Cover on Coastal Structure
Category

1
2

Difference
Affected by bob bars sticking out
1st attempt to correct bar using 2 12mm bars

Loc
Category 1
L1
L2
L5
L6
Category 2
L1
L2
L5
L6
Cat. 1 & 2
25mm

Tests

1552
1552
805
521

1628
1625
1269
675

15462
15188

Mean

42
38
34
32

38
39
42
34

38.8
39.1

Std. Dev.

8.8
9.2
3.7
5.2

7.8
6.8
6.6
3.0
7.3
6.9

95% Char.

27
23
28
23

25
28
31
29

25.7
26.9

35mm design 
min. cover

100mm thick (min)

Bob bar not tightly 
held in place

16mm bar

12mm bar

Tolerance 2mm

250mm

250mm

250mm

250mm

250mm

Level 1

Level 2

Level 4

Level 5

Level 6
100mm

Level 3

Section Through T-Roff

Plot of Cover on One Face (0-5mm low; >5mm low)
L1
L2
L3
L4
L5
L6
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CREAD - Modelling

Target Reliability
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SLS Concrete (PoF 10%)

SLS Bridge (PoF 1%)

Buried (PoF 0.1%)

ULS Prestressed (PoF 0.01%)
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DRCM0=6.3 (FA); c=65mm; 

DRCM0=1.4 (65% Slag) ; c=65mm; 

AS3600 Requirements

To Achieve 1% PoF

For 0.01% PoF

B2/XS1c Exp; 50MPa; Tol -5,+10; SCM; Sc=1.15%
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Ponte Morandi
In 2018 the 1967 Morandi Bridge (Genoa) collapsed due to corrosion of a stays cable. 43 
died. The replacement bridge has robots for cleaning and inspection.

1. Durability design not based on 
protecting against catastrophic 
failure, i.e., reliability was 
inadequately considered. How to 
provide high reliability? 

2. ‘Lack of redundancy’ – How to 
achieve required redundancy?

Livio’s “Brilliant Blunders” - Ignoring Low Probability 
Outcomes. ‘Certainty is generally an illusion’. Do not 
just accept the most likely answer. Lord Kelvin theory 
on earths age based on cooling rate did not account 
for earths liquid core.
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Conclusions

• Use the Levels of Approximation Approach
– Increase design complexity according to:

• Savings obtainable (materials and methods)
• Design stage
• Need for greater options (reliability, exposure, materials)

– Use FPA, not deterministic model.
• Do appropriate testing at design, construction and repair stages.

• Embrace Reliability based Durability Design.
– Include appropriate limit state (avoid ULS)
– Consider consequence of failure

Why not?
• Possibly lower costs by:

• use of improved materials
• tailored design

• Better definition of owner needs and wants
• Better understanding of expected performance

• Reduced risk
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