

Infrastructure Value – Responsibility of Owners "Infrastructure value is 3x that of the capitalisation of all companies." Marcel Poser, Chairman, Proceq. "...AU\$21.9 trillion gap between what is currently invested in infrastructure, and what is actually needed." Marie Lam-Frendo, CEO, Global Infrastructure Hub. "..in 10 to 15 years, Australia's bridges will be in the same condition as the United States, where 30 per cent of 625,000 bridges are listed as functionally obsolete or structurally deficient" Dr Colin Caprani, Monash University.

3

Deemed to Satisfy - Splash (C2) Standard Compaction									
		Design				Lif	е		
	Durability Requirements	AS4997			AS3600	AS5100			
		25yrs	5	oyrs	100yrs	50yrs	100yrs		
		Small Craft	N Cor	lormal nmercial	Special Structures	Concrete Structures	Concrete Bridges		
	Strength (MPa)	50	50Why the difference65when DtS and			50	55		
	Min. Cover (mm)	65				65	80		
	Curing	7d water	exposure similar?			7d water	14d water		
	Cement Type	GP & GB		-	-	-	FA/Slag/SF		
	Min. Cement (kg/m ³)	400		-	-	-	470	1	
	Max. w/c	0.40		-	-	-	0.36		
	Durability Indicator	-		-	_	-	VPV etc	022	

4

Design Life – AS 1170 Reliability vs Consequence										
Serviceability Limit State	Design Life	Importance	Prob. of	rtance						
1 No repair required	(913)	1		npol						
	0.5-100	2-4	4%	i, L						
Typical SLS Po	F 4% 5		Case by Case							
2 Maintains operational continuity	0.5-50	1-3	4%	ž						
	5-25		0.4%	bili						
	50	4	0.2%	ilia						
	100		Hazard Anal.	9						
	5-100	5	Case by Case	sing						
Used for snow, wind and earthquake. Importance Description Durability not specifically included A Post disaster function or dangerous activities BCRC										

Verification Methods $C_{crit}=C_{0}+(C_{s.\Delta x}-C_{0})\times \left[1-erf[(a-\Delta x)/(2\times \{D_{app,c}\times t\}^{0.5}]\right]$ Full probability analysis Increasingly Conservative - Calculates the probability of failure at the end of the design life Partial factor analysis **Durability Verification** - Determined by researchers for key variables Full Probability Analysis Partial Factor Method for practitioners to use deterministically in Avoidance Deemed t Satisfy the equations. Deemed to satisfy - Currently determined by experience but likely to be set by FPA. Avoidance **Deterministic modelling is** - the use of something that eliminates the not included failure risk. 12

	Typical Chloride Model Inputs (fib Bulletin 76)										
	$C(x,t) = C_0 + (C_{S,\Delta x} - C_0) \cdot \left[1 - erf \frac{A - \Delta A}{2 \cdot \sqrt{D_{app}(t) \cdot t}}\right] \qquad D_{app,B}(t) = k_e \cdot D_{RCM}(t_0) \cdot \left(\frac{t_0}{t}\right)^{\alpha_B}$										
Uni	Unit Name Mean Std. Dev. Beta a Beta b Units Source										
D _{RCN}	Migration coef.	5.48	0.07			10 ⁻¹² m ² /s	Measured				
С	Cover	55	5			mm	Design assumption				
C _{cri}	Critical chloride	0.6	0.15	0.2	2	Wt % cem.	Bulletin 76 black, atmos				
C _{sΔ}	Surface chloride	2	0.2			wt.%/c	Bulletin 76 Atmospheric				
α	Age factor	0.65	0.12	0	1	constant	Bulletin 76 Atmospheric				
t _o	Test age	0.255				year	Test certificate				
t	Design life	100				years	Specification				
b _e	Temperature coef.	4800	700			constant	Bulletin 76				
T _{re}	Ref. Temp.	296				degrees K	23C				
T _{rea}	Actual Temp.	301	8			degrees K	28C				
Δx	Surface zone	0				mm	General for atmospheric				
<mark>, ⊂</mark> C0	Base chloride level	0.05				wt.%/c	Assumed				
n	No of simulation	100000				constant	Scilab setting				
BCRC	3CRC										

/	AS3600	EN201		Bulletin 76		CIA Z7/02			
CI	Loc.	CI	Loc.	Mean S _{Cm} COV =0.45	CI	Loc.	S _{Cu}		
A2	Beyond 50Km	-	-	8-1	XS1a	Calm: 1-5km Surf: 5-50+km	µ=0.5		
B1	Near coastal 1-50km	XS1	Coastal	1%	XS1b	Calm: 50m-1km Surf: 1-5km	µ=1.0		
B2	Coastal 0-1km			2%	XS1c	Calm: 0-50m Surf: 400m-1km	µ=2.0		
C1	Marine	XS3	Marine	2-4%	XS1d	Calm:N/A Surf_0-400m Marine	µ=3.0		

Aging Factor (fib Bulletin 76) High Aging Factor gives long design life								
	Cement TypeAging Factorw/c 0.4-0.6Submerge	or BetaD (μ/σ) ed, Tidal, Splash S	a=0.0, b=1.0 Spray Zones					
	CEM 1 (GP Cement) CEMII/A-D (6-10% Silica fume) CEMII/B-V (21-35% Fly Ash)	0.30/0.12 0.40/0.16 0.60 0.15	Same w/c & Strength; Very different					
	CEMIII/A (36-65% S) CEMIII/B (66-80% S) CEM1 +5% SE	0.40/0.18 0.45/0.20 0.40/0.16	performance Aging factor most					
		Atmospheric	influential factor on chloride ingress					
BCRC 18	All	0.65/0.12	PIANC APAC 2022					

Low	Cover on C	Coastal	Stru	cture	2	
Section Through T-Roff	Category 1 2	Difference Affected by b 1 st attempt to	ob bars st	icking out ar using 21	12mm bars	
Tolerance 2mm	Loc	Tests	Mean	Std. Dev.	95% Char.	
^{250mm} ↓ ← 16mm bar Level 1 + → 12mm bar	L1	y 1 1552 1552	42	8.8	27	
250mm Level 2 +++ held in place	L5 L6	805 521	34 32	3.7 5.2	28 23	
Level 3	Category L1	y 2 1628 1625	38 39	7.8	25 28	
	L5 L6	1269 675	42 34	6.6 3.0	31 29	
Level 5 \rightarrow 0 0	Cat. 1 & ≥25mm	2 15462 15188	38.8 39.1	7.3 6.9	25.7 26.9	
	Plot of Cover on C	Dne Face (O		ow; >5m		25m 34 22m 44
Level 6	3 Control (1) State (2) Stat	41 44 64 66 70<	37 33 33 46 41 40 42 44 45 4 37 33 33 57 38 40 40 40 40 44 45 4 40 40 38 46 44 45 4 40 30 30 12 77 72 40 40 40 36 46 44 45 40 30 30 12 77 72 40 26 30 46 44 45 40 30 30 46 44 45 40 30 30 42 77 72 26 30 30 30 12 77 72 26 30 30 30 30 30 27 26 30 31 31 36 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	4 42 42 42 44 2 90 40 44 2 90 40 40 45 9 80 40 46 19 2 90 40 47 9 80 40 46 9 80 87 96 9 80 77 36 9 80 87 96 9 80 77 36 9 80 87 96 9 80 80 90 9 80 80 9 80 80 90 9 80 80 9 80 9	10 27 00 34 24 23 23 26 26 34 35 26 26 34 35 36 35 36 35 36 35 36 35 36 35 36 36 35 36 36 35 36 36 35 36 36 35 36 36 35 36<	

Ponte Morandi

In 2018 the 1967 Morandi Bridge (Genoa) collapsed due to corrosion of a stays cable. 43 died. The replacement bridge has robots for cleaning and inspection.

- 1. Durability design not based on protecting against catastrophic failure, i.e., reliability was inadequately considered. How to provide high reliability?
- 2. 'Lack of redundancy' How to achieve required redundancy?

Livio's "Brilliant Blunders" - Ignoring Low Probability Outcomes. 'Certainty is generally an illusion'. Do not just accept the most likely answer. Lord Kelvin theory on earths age based on cooling rate did not account for earths liquid core.

Conclusions

Why not?

- Possibly lower costs by:
 - use of improved materials
 - tailored design
- Better definition of owner needs and wants
- Better understanding of expected performance
 - Reduced risk

24